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Abstract: This paper presents a software 
system developed to study large tissue blocks 
of Ductal Carcinoma In Situ (DCIS) and to 
quantify genetic variation in them. Given the 
size of the image data set and the 
characteristics of the images, direct 
application of any single global algorithm to 
segment the cell-nuclei and quantify genetic 
heterogeneity is a difficult exercise. The 
software system we propose is based on an 
integrated approach where several image 
analysis algorithms are integrated under one 
robust methodology to extract the maximum 
amount of information from the tissue 
blocks. The study also shows how 2-D image 
analysis of a large number of nuclei can be 
effective in observing genetic heterogeneity 
in cancerous tissue blocks. 
Keywords: Tissue, Nuclei, Segmentation, 
Genetic Heterogeneity. 
 
I. Introduction 
 This paper presents an integrated 
approach for automatic segmentation and 
analysis of genetically aberrant cell-nuclei in 
large tissue blocks of breast cancer tissue. 
The study of these large data sets is useful in 
understanding the genetic heterogeneity of  
malignant tumors. One such case is the 
analysis of Ductal Carcinoma In Situ (DCIS) 
of the breast, a malignant, pre-invasive form 
of breast cancer. DCIS is characterized by an 
abnormal proliferation of transformed cancer  
cells within the boundaries of the existing 
epithelial ductal structures. Holland et al. [1], 
performed histo-pathological gross and 
microscopic analyses of mastectomy 
specimens from 214 women to show that 
30% of the cases had an extensive intra-
ductal component (EIC+), as defined by the 
presence of intra-ductal tumor foci,  more 
than 2cms away from the primary tumor. The 
presence of multiple foci is also reported by 
Lagios et al [2] in DCIS cases without tumor 
invasion, suggesting that intraductal 

spreading can occur before stromal invasion. 
Determining whether these secondary foci 
are in fact morphologically and/or 
genetically related to the primary tumor 
requires reconstructing the tumors in 3D, 
determining the continuity of the ductal 
structures and then comparing the genetic 
make-up of the cells of the foci and the 
primary tumor. We hypothesize the existence 
of a preferential intraductal invasion and 
therefore a common origin between the 
primary tumor and the secondary foci. This 
would give credence to the hypothesis that 
DCIS may exist extensively along the ducts 
at a significant distance from the tumor and 
that it may progress to invasive disease later 
on. Verification of such a hypothesis 
involves analyzing a large number of tissue 
specimens with significant tumor and ductal 
areas as shown in Figure 1(a). After reducing 
the background pattern by subtracting a 
prototype of an empty snapshot as shown in 
Figure 1(b), important regions of interest 
such as ducts and tumors are marked either 
automatically. The corresponding regions in 
the fluorescent stained sections are 
reacquired at a higher magnification. A small 
part of the fluorescent tissue image acquired 
at higher magnification is shown in Figure 
1(c). 

Automatic evaluation of histological 
images exists on several levels. Complete 
automation, semi-automation and  task-
specific automation systems. In the present 
case, each tissue block consists of hundreds 
of data sets of an average size of 5  
pixels, and an average nuclear density of 
4000 nuclei/image. This makes complete 
automation not only desirable but also 
essential. Different techniques to segment 
cell nuclei in tissue images have been 
reported since the 1970s. A review of most 
of the early techniques is provided by 
Preston and Bartels [3]. However, in spite of 
the development of multiple techniques for 
image segmentation, there is no reliable and 
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global technique that can be successfully 
applied for segmentation of histo-
pathological image analysis. Gill et al [4] in 
their review of image analysis and 
morphometry in breast cancer have 
concluded that the absence of any reliable 
nuclear segmentation technique is the main 
cause of the lack of automation in tissue 
image analysis. Nedzeved et al [5] and 
Schupp et al [6] proposed morphological 
filters for cell-nuclei segmentation in tissue 
images. Schupps et al [6] have constructed 
an integrated approach based on several 
morphological filters. They report a good 
success in segmentation but the rate of false 
positives is as high as 35% in some cases, 
with  an average of 11%. Barba and Gill [7] 
have proposed a parametric model fitting 
algorithm for cell segmentation. In it, they 
assume that objects are convex in shape and 
hence that a shape model can be used for 
segmentation. However, in images where not 
only different cell types are present, but also 
normal and transformed cells can be found, 
the assumption of a standard shape for cell 
nuclei might not provide good segmentation. 
Yang and Parvin [8] have used a quadratic 
shape model whose parameters can be 
relaxed for the segmentation of non-standard 
shapes. Zimmer et al [9] used active contour 
models for the segmentation of cell-nuclei. 
Considering the number of nuclei to be 
segmented, initializing the active contour 
models would pose a significant problem. In 
addition active models are prone to noise and 
other artifacts present in the tissue image. 
The thesis on quantitative evaluation of 3-D 
images of tissue sections by Umesh Adiga 
[10] provides an in-depth study of the 
practical problems involved in large-scale 
segmentation of multi-dimensional and 
multi-spectral tissue images. In the present 
work we have tried to solve the problems 
that rendered many of the earlier methods 
only a project specific. We have done this by 
extensive pre-processing to standardize the 
images for segmentation and then by 
recovering the shape of each nucleus by a 
shrink-wrap process. 

A robust approach that automatically 
extracts regions of interest and segment at 
least 75% of cell nuclei with less than 10% 
false positives would thus be essential for 
quantitative analysis. We have not come 
across any publication on segmentation of 

large tissue data that integrates several filters 
and can be used on different images without 
substantially changing algorithm parameters, 
i.e. fully automatic.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 1: (a) Complete tissue section image 
(b) After background pattern removal (c) A 
small part of the region of interest in 
corresponding fluorescent tissue section. 
 

The rest of the paper is presented as 
follows. Section II describes the methods 
designed and implemented to automate 
quantification of the desired features. Section 
III describes how genetic heterogeneity in 
DCIS breast tissue blocks is quantified and 
section IV provides experimental results and 
discussion. 
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II Methods 
Large tissue blocks are physically 

sectioned into 5  thick sections. 
Alternative sections are stained with 
Hematoxylin and Eosin (H&E) and the rest 
of the thin sections are stained using a 
nuclear counter-stain and fluorescence in situ 
hybridization targeting gene Her2 and 
centromere specific chromosomal locations. 
Low magnification (2.5X) images of the 
H&E and fluorescent sections are first 
acquired and approximately registered with 
each other to understand the spatial 
connection of the ducts, tumors, etc. Regions 
of interest (ROI) are semi-automatically 
extracted in each H&E stained tissue image 
and are virtually mapped onto its 
neighboring fluorescent-stained tissue image. 
The multi-spectral images of the regions of 
interest in the fluorescent stained tissue 
specimens are reacquired at a higher 
magnification. The blue color channel 
contains the tissue structure with clearly 
recognizable cell nuclei. Red and green color 
channels contain fluorescent signals 
corresponding to the centromere (green) and 
a specific area of chromosome 17 (red), 
known to host the Her2 gene, which is 
commonly amplified in DCIS tumors. The 
tissue image in the blue color channel is 
segmented and the result of segmentation is 
mapped onto red and green channels and the 
genetic variation of Her2 and the centromere 
of chromosome 17 within the cell nuclei are 
recorded.  

mµ

The image acquisition and analysis 
software system is built in two parts. The 
first part facilitates image acquisition and 
semi-automatic marking of regions of 
interest such as tumors, milk ducts, etc in a 
low-resolution image. It also facilitates 
automatic registration of the slices to form a 
complete spatial structure of ducts and 
tumors. The mapping of regions of interest to 
fluorescent-stained tissue images and 
reacquiring regions of interest at higher 
resolution is done by this image acquisition 
system. The details of the first part have been 
reported earlier [11]. The second part is the 
analysis software system that performs pre-
processing, segmentation nuclei, recognition 
of properly segmented and completely 
represented nuclei and recording of genetic 
variations within the nuclei.  

In histo-pathological images, the 
features that facilitate segmentation of 
individual cell nuclei are image gradient 
peaks representing nucleus boundary and the 
deep boundary/surface concavities where 
more than one cell-nucleus touch or appear 
to overlap. A segmentation process preceded 
by techniques aimed at enhancing these two 
features would thus contribute towards a 
more robust and generally acceptable 
segmentation. A hierarchical, multi-stage 
segmentation process is essential in such 
cases. The control flow diagram of the 
integrated approach is shown in Figure 2 
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Figure 2: Flow diagram of a generalized
segmentation process for histo-
pathological images 
Pre-processing 
e electronic instrumentation noise, uneven 
mination due to camera vignetting, 

proper staining of the tissue, etc., are the 
in causes of noise and artifacts. We have 



implemented a reaction-diffusion filter to 
smooth the image to reduce random noise 
while simultaneously enhancing the 
boundary features of the objects [12]. 
Consider the image function 

( )yxIU ,=    ------- (1). 
The partial differential equation for the 
reaction-diffusion filter can be written as  
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gradient function and  is a parameter that 
determines the relative contribution of 
reaction and diffusion terms and varies from 
0o to 90o. This formulation provides a 
minimum diffusion at the edges and 
extensive diffusion elsewhere [13]. The first 
term,  is a reaction term 
responsible f r edge-enhancement while the 

second term { }Uh 2sin ∇⋅⋅β

=β
o45=β

4.632arctan ≈=β
o90=β

 is a diffusion 

term responsible for smoothing. is a 

pure reaction term, is a nonlinear 

diffusion flow, is the 

Beltrami flow, and is the pure 
diffusion. Figure 3 shows the result of 
adaptive smoothing using action diffusion 
filter mentioned above. 

o0

o

Due to partial absorption of the light 
or camera vignetting, improper alignment of 
the light-source and the camera, variation in 
tissue specimen thickness, etc., the images 
are darker at the corners than at the center. 
We have used a rank-leveling approach to 
remove uneven background illumination. 
Rank leveling is an adaptive, multi-step 
morphological filtering process. In the first 
step, a background image is constructed by 
diffusing the image to an extent that the 
objects are melted into the background. This 
can be accomplished by using grey-scale 
erosion or by repetitive smoothing. The 
resulting image is an approximate 
representation of the background and the 
overall brightness variation. The background 
image is then subtracted from the original 
image, and the grey values below zero are 

clipped to zero. The grey-levels of the image 
are then stretched to improve the contrast. 
This process tends to normalize the data sets 
by standardizing histogram shape and 
average brightness.  

 
(a) 

 
(b) 

Figure 2: (a) A small area of the tissue 
section (b) After adaptive smoothing. 

The next stage of the processing is to 
separate foreground pixels from the 
background. This is accomplished by 
automatic region-based thresholding. 
B. Automatic Thresholding  
Separation of the objects and the object 
clusters from the background can be 
achieved by appropriate thresholding of the 
grey-scale image. Thresholding is a process 
of conversion from a grey-scale image to a 
bi-level image. A bi-level image should 
contain all the information concerning the 
number, position and structure of the objects 
that are present in the grey-level image while 
containing much less other information. The 
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problem is to select a proper threshold that 
accomplishes the above task. We have 
observed that selection of a single threshold 
for an entire image is not possible in most 
cases due to overlapping of the grey-levels of 
the objects and background from different 
regions of the image. Thus the first issue that 
must be addressed, if regional thresholds are 
to be used, is to determine distinct regions 
and the corresponding threshold levels. We 
have implemented a multi-step, adaptive 
region selection method to solve this 
problem. 

In the first step, the smoothed image 
is amplitude thresholded at a global mean 
intensity value given as, 

µτ = kglobal ⋅  --------- (3)  

where  is a tuning constant and  is the 
global mean intensity of the image. The 
tuning parameter can be set experimentally 
for a batch of images acquired under similar 
microscope and illumination settings. In our 
experiment we have used  as a default 
value. Many global threshold selection 
techniques can be used to replace this initial 
step [14]. It is our experience that average 
image intensity is normally a good initial 
guess for a preliminary stage of thresholding. 
The experimental results of the standard 
global thresholding methods such as 
exhaustive-search [15], entropy-based 
thresholding [16], histogram-shape based 
thresholding [17] were not significantly 
different.  The aim of the first step is to 
divide the image into different regions so 
that the further thresholding of the regions at 
a unique threshold value is possible. Hence, 
an approximate thresholding at an average 
intensity value is considered as a first step 
instead of using more complex methods.   

k µ

1=k

In the second step, all the connected 
components in the foreground of the initial 
thresholded image are identified by 
component labeling. Let  be the number 
of unique components in the initial 
thresholded image. 

N

In the third step, the mean grey-
levels  for each connected component 

 are calculated from the grey-
level image.  

iµ
,...,3, Ni 2,1=

In the fourth step, each connected 
component  is thresholded at a unique 
threshold value  

i

ii c µτ ⋅=     ----------- (4).  
The tuning factor c  is experimentally set 
(default ).   5.0=c

 
(a) 

 
(b) 

 
(c) 

Figure 4: Result of multi stage region 
thresholding (a) Original image (b) Result of 
first stage of thresholding (c) Result of 
second stage of thresholding 

In this way we not only divide the 
image into unique regions but we also 
calculate a unique threshold value for each 
and every region. The method is simple but 
very effective in distinguishing different 
regions in the image and setting proper 
thresholds based on the local region 
brightness. Figure 4 shows the result of 
multi-level thresholding on a small part of 
the tissue image.  
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To reduce the number of holes 
within the nuclei as well as spurious 
offshoots at the object surface, we applied a 
grey scale morphological operations such as 
‘closing’ and ‘opening’ over amplitude 
thresholded and component labeled image  
using a structuring element with an 
approximately circular effective kernel. The 
circular shape of the structuring element 
reduces noisy concavities and offshoots in 
the object surface.  This structural smoothing 
of the object boundary reduces the 
fragmentation of the nucleus during 
subsequent steps of segmentation of the cell 
nuclei clusters.  
C. Segmentation of nuclei clusters 

Segmentation of the cluster of nuclei 
is the most difficult aspect of histological 
image analysis. Absence of strong boundary 
features where nuclei appear to touch or 
overlap on one another is a main reason for 
difficulty in delineating the nucleus 
boundary. Our approach to segmentation is 
thus focused on enhancing features that 
facilitate accurate marking of the nucleus 
boundary leading to segmentation. The 
boundary concavities that exist where cell-
nuclei touch one another, is one such feature 
that should be enhanced. This is done as 
follows.  

In the first step a local gradient 
magnitude image is obtained as a first 
derivative of the image intensity value. A 
general gradient map is shown in Figure 5(a). 

In the second step, the gradient 
image is subject to a boundary sharpening 
filter. We have modified a directional 
smoothing filter to smooth selectively along 
the boundary while suppressing the non-
boundary gradient values [15]. At every 
pixel location in the gradient map, the local 

 neighborhood is divided into four 
directions and the average gradient 
magnitude in each direction is calculated. 
The direction of the boundary at a pixel 
location is that direction in which the 
average gradient magnitude is maximum. A 
semi-Olympic average of the gradient 
intensity in the boundary direction is then 
used as the value of the pixel in the 
smoothed gradient map. An Olympic 
averaging discards extreme values while 
averaging. In semi-Olympic filter we have 
discarded only the maximum value. This 
process not only facilitate suppression of 

noisy gradient peaks but also implicitly 
facilitate sharpening of the gradient peaks at 
the boundary by suppressing the gradient 
magnitude of the pixels located away from 
the boundary. Figure 5(b) shows the result of 
sharpening the gradient magnitude image by 
the above described process.  

33×

Next step is to synthesize the nuclei 
boundary from the sharpened gradient image. 
All the pixels in this smoothed gradient 
image with gradient value smaller than the 
average gradient magnitude of the image is 
suppressed to zero value. From the resulting 
image, the primary, secondary and tertiary 
local gradient peaks are retained for further 
processing. The primary gradient peak is the 
pixel with a maximum gradient magnitude in 
a  neighborhood. The secondary peak 
and tertiary peaks are the second and third 
maximum gradient magnitude values in a 

 neighborhood. The gradient peaks 
image is smoothed and the skeleton of a 
smoothed gradient peak image can be 
expected to provide an approximate, though 
discontinuous, boundary of the cell-nuclei 
The whole process of gradient peak 
selection, smoothing, etc., is necessary to 
avoid the effect of noisy gradient peaks. If 
they are left unchecked, they result in 
fragmentation of the objects in clusters 
during final stages of segmentation. Figure 
5(c) shows the skeleton of the gradient map 
superimposed on the original grey-level 
image.  

33×

3×3

In the fourth step, all those pixels in 
the thresholded image that correspond to the 
skeleton of the gradient map are converted 
into background pixels. This creates 
concavity, where cell nuclei touch or appear 
to overlap and hence vastly improves the 
segmentation result. This process, even if 
does not completely separate touching cells, 
enhances the features that indicate the 
overlap of cell nuclei.  

At this stage, some of the cell nuclei 
might touch one another by a fairly thin 
connection and need a simple pinching-off 
by a few iterations of erosion or boundary 
pealing followed by conditional dilation or 
thickening to be separated. Ultimate erosion 
and conditional dilation for complete 
segmentation of the clusters as proposed by 
Russ [18] has many practical disadvantages. 

 6 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5: (a) Gradient magnitude image (b) After 
directional enhancement (c) Boundary 
synthesized from the gradient image is (d) Binary 
image after concavity enhancement. 

The assumptions of similar size and shape 
for the objects in the cluster, distinguishing 
noisy signatures from the proper signature of 
the nucleus, stopping erosion of the 
signatures selectively to avoid loss of 
information, keeping track of the number of 
iterations of erosion each signature has gone 
through to become a unique signature, etc., 
are some of the disadvantages of using 
iterative erosion and dilation technique. 

When the approximate size and the 
average intensity values of the nuclei in the 
image are known, this information can be 
provided as a priori information to the 
filtering process for selecting individual 
isolated cell-nuclei and flagging cluster of 
nuclei for further processing. Otherwise, a 
data-driven process to filter-out the artifacts 
is necessary. We have used relative size and 
relative intensity filters to eliminate artifacts 
and flag-off object clusters for further 
processing and to remove artifacts. The 
relative size of the object defined as the 
ratio of the size of that object to the average 
size of objects in the image, is used to 
eliminate artifacts and separate isolated 
objects from clusters. All individual objects 
are first ordered based on their sizes i.e. 
number of pixels within the objects. The 
average size is calculated by an α -trimmed 
filter which excludes α number of extreme 
size elements in the size ordered list of 
objects for calculation of the average object 
size in the image. We have used α  
thus cutting of 25% of the objects on both 
extremes of the size-ordered and average 
intensity ordered list of the cell-nuclei 
respectively. If the size of the object i  isV , 
then the relative size of the object i  is given 
by 
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where is the number of isolated objects 
present in the image and α  is the cut-off 
threshold of theα -trimmed filter . The 
relative intensity of the object  is defined 

as the ratio of the average intensity of the 
object pixels to the average intensity of 

N
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foreground pixels in the image. If the 
average intensity of the object i  is iI , then  

α
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I
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The relative object size and relative object 
intensity of each individual object in the 
image is calculated. All those objects with 
relative mean object intensity less than 0.3 
are considered as artifacts and eliminated. 
Objects whose relative size is above 1.1 and 
below 0.7 are flagged off for second stage of 
segmentation. The numerical thresholds 
mentioned here are set based on experiments 
on considerably large number of data and are 
automatically updated. Let,  be the 

image containing segmented cell nuclei and 
the image containing the clusters of 

cell nuclei that are yet to be segmented. A 
region growing technique that can be argued 
as a generalized watershed algorithm is 
initiated for cluster segmentation [19]. 

seg

clusterI

 A distance map of  is 
generated by using a distance-transform as 
explained by Borgefors [20].  This distance 
map provides a reconstructed grey-scale 
image of  with local intensity peaks 
representing the centers of the objects in the 
cluster and the grey-level decreases 
uniformly from the center of the objects 
towards its boundary.  Region growing 
algorithm on this distance map is described 
in a few steps as follows.  

clusterI

clusterI

Let dist(.) represent the distance value of 
pixels in the distance map, d  be the 
maximum distance in the distance map, 

 be the next maximum distance level 
and  be the minimum distance value in 
the distance map. 

max

nextd
dmin

Step 1: The pixels having maximum distance 
 in the distance map are considered as 

regional markers. The markers are labeled by 
a sequential component labeling algorithm. 
To start with, a regional marker may consist 
of a single pixel or a group of connected 
pixels. 

maxd

Step 2: Pixels having a distance value  
 and located in the immediate 

neighborhood of the regional markers are 
merged with the corresponding regional 
marker.  

( nextd

This step can also be viewed as 
growing the regional markers into their 
neighborhood pixels that have a distance 
value  by tagging them with the 
corresponding label of the marker. 

nextd

The pixels or the groups of 
connected pixels in the distance map with 
distance  and not having a labeled 
regional marker in their immediate 
neighborhood are considered as new markers 
and are given new labels. At the end of this 
step all the pixels with distance value  
have a unique label attached to them 
showing they belong to regional markers. 

nextd

nextd

Step 3: Upgrade  as the maximum 
distance value of the pixels in the distance 
map that are not yet assigned a label of a 
regional marker. 

nextd

Step 4: If then steps 2 and 3 
are repeated. 

minddnext ≠

Figure 6 shows the result of multi-
stage segmentation. Figure 6(a) is the two-
tone version of segmented regions while 
Figure 6(b) shows overlaying of the 
boundary of isolated regions on the original 
image.  

The artifacts in the segmented image 
are identified by measuring the size and the 
shape of the objects. From image  that 

contains isolated cell nuclei, we have 
calculated size threshold values. All the 
objects which fall below the size threshold 
limit are considered as fragments and merged 
to the nearest larger object. If the fragment is 
connected to more than one object, then it is 
merged with that object with which it shares 
larger common boundary. Objects that are 
above the maximum size limit are removed 
from further processing. If the objects can be 
generally categorized as convex shapes, 
shape-filters can be incorporated to identify 
fragments. The standard deviation of the 
sampled boundary pixels from the object 
centroid is considered as a shape indicator. In 
our experiments, shape indicator did not alter 
the final result significantly. Shape based 
filters are effective in isolating non-nuclear 
artifacts or the cells whose shape change 
significantly due to malignancy. We argue 

segI
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that the shape based filters should be a part 
of the integrated approach for making the 
segmentation process more global in nature. 

 

 
(a) 

 
(b) 

Figure 6: Result of segmentation by region 
growing (a) Segmented image (b) Boundary 
of the segmented image is overlaid on the 
original grey scale image.  

 
D. Shrink Wrapping 

The accuracy of segmentation 
obtained by sequential combination of 
different region based techniques depends on 
the accuracy of thresholding and the 
intermediate processing stages. Generally, 
the shape of the segmented objects is 
influenced by the shape of the structuring 
elements used in the morphological 
operation for structural smoothing, noise 
reduction, etc. Segmentation of clusters 
relies on the presence of a concavity where 
two objects touch one another. These need 
not be the same pixel locations with local 
gradient maxima indicating the actual 
boundary separating touching cell-nuclei. 
Thus the shape of the cell nuclei obtained by 

the above described region based processes 
might not depict the accurate shape of the 
cell-nuclei. To regain accurate shape, we 
implemented a dilation and shrink-wrap 
process. Here we consider the isolated 
objects extracted thus far as just the 
signatures of the cell nuclei. Each iteration 
step consists of growing signatures to occupy 
a pre-defined number of pixels in its 
immediate neighborhood followed by grey 
scale shrinking. The number of iterations of 
dilation-and-shrink defines the neighborhood 
region the signatures are grown into. 
Signatures are uniquely labeled prior to 
dilation to avoid merging of segmented 
regions. Grey scale shrinking is described as 
follows.  

In the first step, the labeled nuclei-
signatures are dilated by grey-scale 
morphological dilation.  

In the second step, the nuclei-
signatures are shrunk along their surface only 
if the surface/boundary pixels have a grey-
level below a predefined threshold. Low grey 
scale spots entirely within the objects are not 
affected while the object shrinks.  

During shrinking, all the pixels 
which are below certain threshold in its grey-
level are converted into background under 
the condition that it does not create a hole 
within the nucleus-signature.  

The process of shrinking continues 
until there are no more shrinking is possible 
i.e. all the boundary pixels have grey-level 
above the threshold. We have used the 
threshold  where ε  is a tuning 
constant and is the average intensity of 
the pixels that belong to the signature of the 
object .  

iµε ⋅

iµ

i
In the third step, the objects are 

dilated again and the process of shrinking is 
repeated. Ideally, the shrink-wrapping 
process is stopped when the difference 
between the size of the objects before and 
after an iteration of shrink-wrapping 
becomes zero. In practice, the process of 
shrink-wrapping is stopped when the change 
in size of the object between two consecutive 
iterations is negligible. Figure 7 shows the 
result of shrink-wrapping for improving the 
accuracy of segmentation. 

If the objects are bloated beyond 
their actual boundary in the beginning of the 
shrink-wrap process, such objects are simply 
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shrunk back to their shape and no major 
change in the shape and size takes place after 
that. The advantage of this shrink-wrapping 
process is that the shrinking takes place 
based on the intensity characteristics of the 
individual cell nuclei. Thus in malignant 
tissues, individual nuclei that show different 
histogram features are not unduly influenced 
by the property of the pixels belonging to 
other cells. 

 

 
(a) 

 
(b) 

Figure 7: Result of segmentation (a) Original 
grey scale image, (b) After segmentation and 
shrink-wrapping. 

The shrink-wrap process differs from 
region-growing in a significant way. Region 
growing process assumes that the initial seed 
or marker is well within the actual object 
boundary and hence does not allow 
shrinking. The shrink-wrap process allows 
the initial bloated region to shrink back to its 
shape. If the signature is not bloated 
uniformly around the object, shrink-wrap 

process allows different parts of the 
boundary to either shrink or grow in the 
same iteration and facilitate accurate shape 
extraction. 

 
III. Analysis of Genetic-
Heterogeneity 
Quantification of genetic variation in cancer 
is helpful to understand the genetic 
heterogeneity of the disease, which in turn 
can provide information about its history and 
more importantly, its future progression. 
Evidence of the existence of amplified and/or 
deleted genome regions has been extensively 
reported both in invasive carcinoma of the 
breast and DCIS [21]. To reduce the error 
due to loss of information by 2-D imaging, 
we have studied amplified genome regions 
instead of deleted ones as a marker of 
cancerous cells. The level of magnification is 
considered as a way to determine genetic 
heterogeneity between different parts of the 
tumor. The problem of loss of information 
due to 2-D imaging still exists for amplified 
signals, but it is much less significant 
compared to deleted signals. 

 In situ hybridization enables the 
morphological demonstration of specific 
genome or RNA sequences in individual 
cells, tissue sections or chromosome 
preparations. In our experiments, the 
fluorescent stained tissue sections are also 
stained by fluorescence in situ hybridization 
(FISH) with probes to the centromere and an 
area of chromosome 17 known to host the 
Her2 gene, which is often over-expressed in 
DCIS. The Her2 gene is labeled with a Red 
fluorescent tag while the centromeric probe 
was labeled green-labeled using a FITC 
fluorochrome. . We propose to distinguish 
cancerous from normal cells using the 
number of copies of the Her2 gene that are 
shown as bright spots in the FISH signal 
image. The centromere shows no 
amplification in malignancy and is used as a 
control to study the Her2 amplification.  One 
could argue that more accurate genetic 
analysis can be done using confocal imaging 
and 3-D analysis [22 23]. However, light 
scattering and hybridization efficiency limits 
the thickness of the sections that can be 
analyzed using confocal microscopy to less 
than 40µm. This is very small compared the 
usual thickness of our samples (3-5 mm). 
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This thickness is required to be able to 
preserve meaningful connected tissue 
structures such as ducts, etc. In addition, 
even if the light penetration and sample 
preparation allowed staining and imaging of 
such thick blocks, the amount of data 
produced would be multiple times higher 
than using physical sectioning and 2D 
imaging using a standard fluorescent 
microscope. Since we acquire information 
about the centromere of a chromosome that 
is not amplified due to malignancy, 
comparison of its quantified measure with 
the measure of the Her2 gene over large 
number cell-nuclei in the tissue can be 
expected to provide reliable information 
about genetic heterogeneity without the 
necessity of 3-D imaging. By analyzing cell 
nuclei of similar size and shape, we can 
argue that the error due to analyzing 2-D 
projections of what is essentially a 3-D 
structure, which is randomly located in a 3-D 
space within the cell nucleus, is considerably 
reduced. In summary, our argument favoring 
a standard 2D fluorescent microscope stems 
from factors such as the amount of data to be 
analyzed, complexity of the data and the 
reduced necessity of multi-dimensional 
imaging due to analysis of large number of 
cell nuclei. 

To identify genetically aberrant cells 
one might count the number of fluorescent 
signals present in the cell nuclei or integrated 
the fluorescence intensity in the nucleus area. 
A reasonable method to detect FISH signals 
and to determine their parameters should be 
translation, scaling and rotation-invariant, 
and should be able to measure a range of 
parameters about the signal. The accuracy by 
which the parameters are determined must be 
as accurate as the level of noise permits. A 
simple algorithm for detecting the signals, 
which satisfies the above-mentioned 
conditions, is to locally threshold the image 
at an appropriate level and to characterize the 
signal by using its intensity, size and shape 
property to distinguish it from noise. A 
global top-hat filter is used to enhance 
‘spot’-like structures in the image prior to 
local thresholding and identifying FISH 
signals. The global top-hat also reduces the 
bleed-through effect in the different spectral 
channels of the image data.  

 
(a) 

 
(c) 

 
(c) 

Figure 8: Result of processing FISH signal 
channel (a) Original image of the FISH 
signal channel (Her2 gene). The bright spots 
are the FISH signals (b) The background 
image representing bleed-through (c) After 
bleed-through reduction. 

The region of interest for counting 
the FISH signals is only within the cell 
nuclei. For this purpose the segmented and 
labeled tissue image is virtually 
superimposed on each FISH signal channel.  
Regions outside the cell nuclei and regions 
of the truncated cell nuclei are discarded. All 
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the spot like structures in each FISH signal 
channel that correspond to nuclei regions are 
examined as to whether they are FISH 
signals or artifacts. Automatic detection of 
the overlapped signals is done by inspecting 
the intensity profiles and feature vector of 
the connected group of pixels. Analysis of 
overlapped Fluorescent signals is reported by 
Adiga et al [23].  

After separating all the overlapped 
signals, the FISH signals are labeled 
separately for each cell nucleus. Figure 8, 
shows the result of processing of the FISH 
signal channel at successive stages. Figure 
8(a) shows FISH spots representing Her2 
gene. Figure 8(b) is the representation of 
bleed-through calculated by global top-hat 
operation. Figure 8(c) shows the FISH signal 
channel after noise reduction. The number of 
signals present, average and relative 
brightness of the signals, average and 
relative size of the signals (in pixels), total 
brightness of the FISH signals, ratio of total 
size of the FISH signals in the nucleus to the 
size of the nucleus and the total fluorescence 
in each cell nuclei within each FISH channel 
are recorded for analyzing genetic 
heterogeneity.  
 
IV. Results and Discussion  
Experiments were conducted on a large 
number of data sets of thin tissue sections 
( ) of human breast cancer tissue. The 
sections were imaged using a Zeiss Axioplan 
I microscope. Image sizes varied depending 
on the size of the specimen and the areas 
being analyzed. To evaluate the 
segmentation we used one hundred and forty 
large tissue sections from two different 
cancer specimens. Our target, that 75% of 
the total cell nuclei be correctly segmented 
with less than 10% false positives, is 
achieved in almost all the cases.   

mµ5

The Importance of the accuracy in 
delineating nuclear boundary depends on the 
application. In cases such as cell counting, it 
is not really necessary to have an accurate 
marking of boundary or shape etc., as long as 
one would count the same number of cell-
nuclei and accurately recognize an individual 
nucleus. It is important to have accurate 
shape information when we classify cells of 
different tissues or to distinguish healthy cell 
nuclei from a malignant ones, etc. 

Segmentation accuracy can be measured as a 
percentage of symmetric difference in the 
area of the cell-nuclei given by automatic 
segmentation and manual segmentation. If 
‘A1’ is the area of a cell nucleus segmented 
by an automatic method, i.e. set of all pixels 
in the nucleus segmented by automatic 
method and ‘A2’ is the area of the same 
nucleus segmented manually then the 
percentage of symmetric difference is given 

by  
{ } { }
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 Where 

‘ ’ is the set union operator, ‘ ’ is the set 
intersection operator and ‘ ’ is the set 
difference operator. One hundred cell-nuclei 
were randomly selected from different 
images and their boundaries   manually 
delineated. The percentage symmetric 
difference in the area of each of the cell 
nuclei when segmented manually and 
automatically was then calculated. We have 
found that such a percentage difference never 
exceeded 7%, which is an acceptable error 
limit. Table 1 shows the total number of cells 
present, number of cells segmented, number 
of false positives in a few randomly selected 
data sets from three cases. The percentage 
scores shown in the table is a representative 
score and in all the images we have 
analyzed, we are mostly within the limits of 
at least 75% of the cell-nuclei segmentation 
with less than 10% false positive rate. 

∪

There is no generally accepted 
segmentation technique for delineating cell 
nuclei and hence is difficult to compare the 
proposed methodology to other state-of-the-
art techniques. What we hope to achieve is 
that the proposed integrated approach and its 
variants would form the general 
segmentation technique that would be 
successful in most of the tissue analysis 
experiments. 

Quantification of the number of 
copies of gene labeled using FISH is a 
straight forward process. We have analyzed 
two individual cases consisting of sixty-five 
and sixty tissue sections respectively. 
Twenty smaller size images are also 
analyzed. Approximately five to six distinct 
areas in each section are selected for 
acquiring higher magnification images. Each 
area of interest, on an average, contains 
three-thousand cell nuclei. Table 2 shows the 
number of data sets, the number of cell 
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nuclei that has amplified FISH signals and 
the corresponding standard deviation of the 
FISH signals per nucleus within a section 
and standard deviation of total fluorescence 
brightness per nucleus within a section (Dev. 
Total FISH). The standard deviation across 
the specimens shows that the genetic 
heterogeneity exists farther from the pre-
malignant tumor. 
Case Sp. 

No. 
Total 
Nuc. 

Seg.Nuclei 
(%ge 
correct seg.) 

False 
Positive
s (%) 

1.  1 5731 5538 (88%) 438(8%) 
 2 4733 4333 (87%) 211(5%) 
 3 4338 4691 (95%) 431(10) 
 4 3609 3655 (92%) 309(9%) 
2 1 4064 4166 (94%) 327(8%) 
 2 3171 3301 (87%) 523(16) 
 3 4008 3941 (89%) 372(10) 
 4 2089 2289 (93%) 328(15) 
 5 2007 2109 (93%) 230(11) 
 6 2061 2101 (93%) 183(9%) 
3 1 65 68 (93%) 7 (11%) 
 2 46 49 (86%) 9 (18%) 
 
Table 1: Lists a selected number of images, 
total number of cells present,, number of 
segmented cells and the number of false 
positives. 

Most the functions in the software 
are written in IDL. The C language is used 
for low-level processing of images. The 
software is tested on a 512 Mb RAM, 1GHz 
speed, Win2000 PC. An image of 
approximately 5K x 5K size takes about 
fifteen minutes to complete the segmentation 
and analysis of fluorescent signatures of the 
genes. To conclude, this paper has presented 
an automatic integrated methodology for 
segmenting cell populations in large tissue 
sections. The combination of the several 
segmentation techniques and enhancing the 
delineation features of the nuclei is shown to 
be effective even when the cells are 
overlapping or touching one another.  By 
using shrink-wrapping as a post-processing 
technique, the segmentation technique is 
made more accurate and less dependent on 
the accuracy of initial thresholding. This 
automated approach for segmentation has the 
added advantage of repeatability of the 
experiment and reproducibility of the result. 
If any error exists, they will always be 

systematic, and it will influence control and 
experimental populations identically. 
Spec. 
1 

No.Cells Dev. in 
No.FISH 
Signals 

Dev. 
Total 
FISH 

1 1749 0.465 1.36 
2 1931 0.658 0.93 
3 1856 0.839 2.11 
4 2101 0.925 2.07 
Avg. Dev.= 0.721 1.617 
Spec. 
2 

No.Cells Dev. in 
No.FISH 
Signals 

Dev. 
Total 
FISH 

1 1760 1.241 3.161 
2 1720 1.02 3.015 
3 931 1.13 1.923 
4 2611 3.38 2.607 
5 1176 1.307 2.431 
6 1118 1.366 3.783 
Avg. Dev.= 1.574 2.82 
Spec. 
3 

No.Cells Dev. In 
No.FISH 
Signals 

Dev. 
Total 
FISH 

1 26 2.103 4.036 
2 23 2.404 3.664 
Avg. Dev. = 2.253 3.85 
 
Table 2: Shows the number of data sets 
(Spec.), number of isolated regions of 
interest (ROI) and the number of cell nuclei 
segmented from those regions of interest and 
corresponding deviation in number of FISH 
signals per cell nucleus.  
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